Bernstein Polynomials For Solving Abels Integral Equation
نویسندگان
چکیده
منابع مشابه
Normalized Bernstein polynomials in solving space-time fractional diffusion equation
*Correspondence: [email protected] Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran Abstract In this paper, we solve a time-space fractional diffusion equation. Our methods are based on normalized Bernstein polynomials. For the space domain, we use a set of normalized Bernstein polynomials and for the time domain, which is a semi-infinite domain, ...
متن کاملA solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials
In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.
متن کاملA Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation
In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملNumerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials
In this paper, Bernstein piecewise polynomials are used to solve the integral equations numerically. A matrix formulation is given for a non-singular linear Fredholm Integral Equation by the technique of Galerkin method. In the Galerkin method, the Bernstein polynomials are exploited as the linear combination in the approximations as basis functions. Examples are considered to verify the effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics and Computer Science
سال: 2011
ISSN: 2008-949X
DOI: 10.22436/jmcs.03.04.06